Exponentials and Logarithms

An exponential function is any function of the form,

$$f(x) = a^x \quad a \in \mathbb{R} \tag{1}$$

here, a is just any number being raised to a variable exponent. Exponential graphs look like,

Depending on how large a is the function will 'explode' up to infinity at different rates.

By far, the most common exponential is the number e. e is an irrational number and therefore goes on forever but it is approximately equal to 2.71. While e seems sort of arbitrary and pulled out of thin air, it does seem to have an eerie tendency to pop up in tons of real world applications.

The graph of $f(x) = e^x$ looks like,

The key things to notice is that f(x) has a domain, $D: (-\infty, \infty)$ and a range, $R: (0, \infty)$. This implies that f(x) has a horizontal asymptote, y = 0. e^x will get infinitesimally close to the line y = 0 but it'll never actually reach that line. Thus it has NO x intercepts. It does have a y intercept and it is at the point (0,1). This means that $e^0 = 1$.

Like all functions, exponential functions have inverses. The inverse of the exponential is the logarithm, or log, for short.

The logarithmic function with base a denoted by log_a is defined as,

$$log_a x = y \Leftrightarrow a^y = x \tag{2}$$

What this means is that $log_a x$ is the *exponent* that the base a must be raised to, to give x. When a = e we say that the logarithm $log_e x$ is the *natural log* and we write it instead as ln(x). We don't write the e. By writing ln we are implying the base is e.

Because the exponential function $f(x) = e^x$ and the natural log function g(x) = ln(x) are inverses, we know that they are symmetrical about the line y = x.

We can summarize the following characteristics here:

	Exponential Function	Logarithmic Function
Domain	$(-\infty, \infty)$	(0,∞)
Range	(0,∞)	$(-\infty,\infty)$
x - intercept	none	(1,0)
y - intercept	(0,1)	none
asymptote	y = 0	x = 0

With just this information, we can now apply transformations to the graphs of exponentials and logarithms like we do to usual functions. Here are some examples.

• Example 1: Graph the function and find its domain and range.

$$f(x) = -ln(x-2) + 1 (3)$$

As usual we first recognize that our base function is f(x) = ln(x). We will graph that first.

Next, we will apply the changes inside the parenthesis and shift our graph two units to the right, f(x) = ln(x-2).

We now deal with the negative out in front which will give us a vertical reflection about the x axis, f(x) = -ln(x-2).

And finally we shift our graph up 1 unit, f(x) = -ln(x-2) + 1.

For our final graph we see that our domain and range are going to be,

$$D:(2,\infty) \tag{4}$$

$$R:(-\infty,\infty) \tag{5}$$

Because our domain is shifted two units to the right our vertical asymptote is also shifted from x = 0 to x = 2.

• Example 2: Graph the function and find its domain and range.

$$f(x) = -e^{x-1} - 2 (6)$$

Our base function is $f(x) = e^x$ so we will graph that first.

We next deal with what first acts on our function which will be the x-1 in the exponent, $f(x) = e^{x-1}$. It shifts our function one unit to the right.

Next, the negative out in front flips our graph across the x axis and finally we bump our function two units down, $f(x) = -e^{x-1} - 2$.

We see that our domain and range, respectively are,

$$D: (-\infty, \infty)$$

$$R: (-\infty, -2)$$
(8)

$$R: (-\infty, -2) \tag{8}$$

This domain implies that our new horizontal asymptote is y = -2 and not y = 0.

Here are some example functions for you to work out on your own.

• Problems: Graph the following functions and find their domain and range.

$$f(x) = \ln(x - 4) - 1 \tag{9}$$

$$g(x) = e^{-x} + 2 \tag{10}$$

$$h(x) = \ln(-x+4) \tag{11}$$

$$p(x) = -\ln(x+2) - 6 (12)$$